Classification of Signals Using Wavelets and Principal Components Reduction, with Application to Auditory Brain Activity
نویسنده
چکیده
The paper deals with a generalized linear model with functional data using a wavelet representation of the signals. A reduction of dimension is first obtained through a principal component analysis. The discriminative function is then given by a loglikelihood maximization, with a LASSO penalization, in order to ensure the sparsity of the wavelet representation. In order to have a data-driven procedure, we explore different cross-validation schemes. A simulation study is presented, showing our estimator that is competitive with those described in Reiss and Ogden (2013). We apply this model to a classification of functional EEG data, to study the capacity of discrimination of nearby sounds.
منابع مشابه
Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کاملOptimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions
Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Meth...
متن کاملFeature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملRobot control system using SMR signals detection
One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...
متن کاملNormal Electrical Activity of the Brain in Obsessive-Compulsive Patients After Anodal Stimulation of the Left Dorsolateral Prefrontal Cortex
Introduction: Transcranial Direct Current Stimulation (tDCS) has been used as a non-invasive method to increase the plasticity of brain. Growing evidence has shown several brain disorders such as depression, anxiety disorders, and chronic pain syndrome are improved following tDCS. In patients with Obsessive-Compulsive Disorder (OCD), increased brain rhythm activity particularly in the frontal l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013